

EUCAST rapid AST aus Blutkulturen

> Grundlagen der Methode

- Rapid AST im Routinelabor
 -) Implementierung / QC
 - > Erfahrungen / Stolpersteine

Methodology - EUCAST rapid antimicrobial susceptibility testing (RAST) directly from positive blood culture bottles.

Version 1.1

May 2019

http://www.eucast.org/rapid_ast_in_blood_cultures/

Grundlagen des rapid AST

Standardisierte und von EUCAST validierte Methode zur Resistenztestung direkt aus positiven Blutkulturen

> Basierend auf EUCAST Agardiffusionsmethode

Klinische Breakpoints:

E. coli, K. pneumoniae, P. aeruginosa, S. aureus, E. faecalis, E. faecium, S. pneumoniae, A. baumannii

Screening Breakpoints (ESBL, Carbapenemasen)

> E. coli, K. pneumoniae



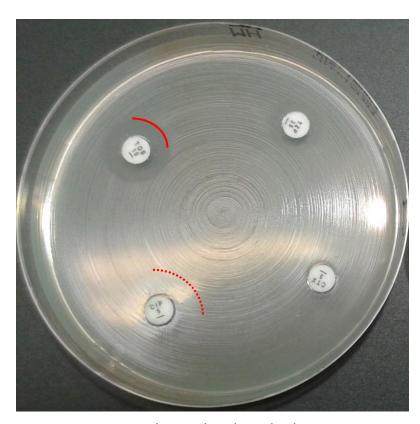
Inokulation und Inkubation

1. Positive BK Gramfärbung ID (MALDI-TOF)

2. 100 – 150 μL BK (runde 90 mm Platten)

3. Verteilen des Materials

4. Vorsichtig auf Platte ausstreichen


- 5. Antibiotikaplättchen auflegen
- **6.** Inkubation + Ablesung nach: **4h, 6h, 8h** (jeweils **±** 5 Minuten)

Ablesung der HHD

- Abstand ca. 30 cm
- > Ablesung von vorne ohne Deckel
- Nur Ablesen, wenn ein klarer Rand erkennbar ist
- Dünnes Wachstum innerhalb der Zone muss ignoriert werden

Nicht Ablesbar! Was nun?

E. Coli nach 4h Inkubation

 $http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/RAST/EUCAST_RAST_methodology_v1.1_Final.pdf$

Anteil der ablesbaren HHD in %

Organismus	4h	6h	8h
Escherichia coli	90	99	99
Klebsiella pneumoniae	96	98	98
Pseudomonas aeruginosa	0	88	97
Acinetobcater baumannii	99	100	100
Staphylococcus aureus	55	91	95
Enterococcus faecalis	93	99	100
Enterococcus faecium	44	93	99
Streptococcus pneumoniae	68	83	95

Min 80 %

 $http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/RAST/EUCAST_RAST_methodology_v1.1_Final.pdf$

EUCAST rAST Breakpoints Table

Escherichia coli

EUCAST RAST breakpoint table v. 1.1, valid from 2019-05-02

Zone diameter breakpoints for RAST directly from blood culture bottles

EUCAST rapid disk diffusion method directly from positive blood culture bottles

Medium: Mueller-Hinton (MH) agar

Inoculum: 125±25 µL directly from a positive blood culture bottle

Incubation: Air, 35±1°C

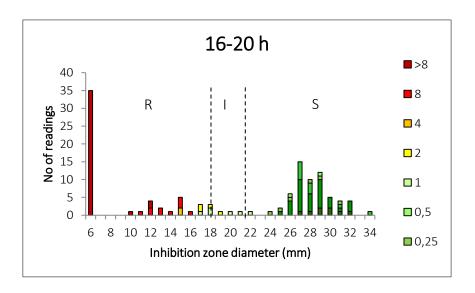
Incubation time: 4, 6 and 8 hours

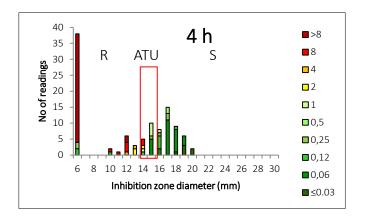
Reading: Remove lid and read zone edges from the front against a dark background illuminated

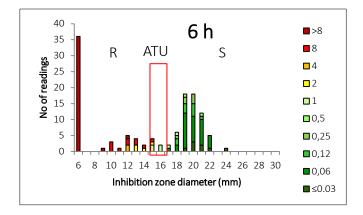
with reflected light.

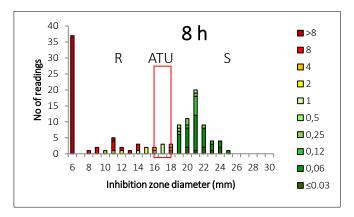
QC for implementation of RAST

Antimicrobial agent Disk content		4 hours		6 hours			8 hours			
Anumicrobial agent	(µg)	S≥	ATU	R<	S≥	ATU	R<	S≥	ATU	R<
Piperacillin-tazobactam	30-6	17	12-16	12	18	14-17	14	18	14-17	14
Cefotaxime ¹	5	15	13-14	13	16	14-15	14	17	15-16	15
Ceftazidime ¹	10	15	12-14	12	16	14-15	14	17	15-16	15
Meropenem ²	10	18	15-17	15	17	15-16	15	17	15-16	15
Ciprofloxacin	5	17	14-16	14	20	17-19	17	20	17-19	17
Amikacin	30	15	13-14	13	15	13-14	13	15	13-14	13
Gentamicin	10	14	12-13	12	14	12-13	12	14	12-13	12
Tobramycin	10	14	12-13	12	15	13-14	13	15	13-14	13

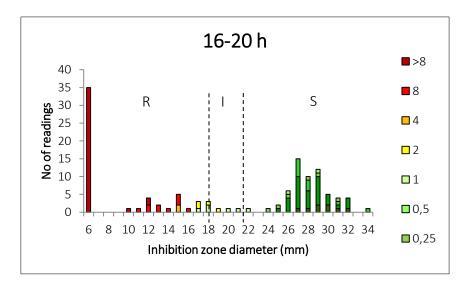



Warum neue Breakpoints





E. coli with cefotaxime 5 μg vs. BMD Spiked BC bottles vs. standard DD



E. coli with cefotaxime 5 μg vs. BMD Spiked BC bottles vs. standard DD

- HHD ändern sich mit der Zeit
 - Separation erhöht sich bei längerer Inkubationsdauer
- Neue Breakpoints für RAST
- Area of Technical Uncertainty verhindert den Report falscher Ergebnisse

Zur Verfügung gestellt von Emma Jonasson, Department of Clinical Microbiology, Växjö, Växjö, Sweden

Testperformance EUCAST rAST

rAST catergorical agreement vs. EUCAST standard Agardiffusion (%)

E. Coli (150 Isolate)					
	4h	6h	8h		
Correct	79	89	82		
mE	0,6	1,4	1,5		
ME	1,7	0,8	0,7		
VME	0,4	0,3	0,4		

Emma Jonasson, ECCMID 2019, Abstract 00254

EUCAST rapid AST im Routinelabor

Rapid AST im Routinelabor

Für welche BK Flaschen

Bis 18h nach positiv

Bis zu 3h nach Entna

Keine Breakpoints für Spezies

KEINE Interpretation

Ablesen und Interpreta

- ID unverzichtbar
- Ablesung innerhalb
- Reinkubation innerh
- Interpretation nach
- **KEINE** Inkubation > 8

Endgültige Ergebnisse

eitpuntes

Implementierung und Qualitätskontrollen

Implementierung / Änderungen im Procedere / Einarbeitung

- Rapid AST QC
 - Gespikte BK (QC Stamm + Pferde/Schafsblut)
 - > Rapid AST
 - Inkubation und Ablesung 4h, 6h, 8h

Routine QC für Materialien

Standard Qualitätskontrollen nach EUCAST Agardiffusionsmethode

Persönliche Erfahrungen

Für welche Spezies benötigen wir rapid AST in unserem Setting?

Spezies
Escherichia coli
Klebsiella pneumoniae
Pseudomonas aeruginosa
Acinetobacter baumannii

E. coli ATCC 25922

4h 6h 8h

Ergebnisse QC Testungen

HHD lesbar in %	4h	6h	8h
E. coli ATCC 25922	90	96	100

10 Testläufe mit endgültigem Inokulum und Handling

Stolpersteine

Handling

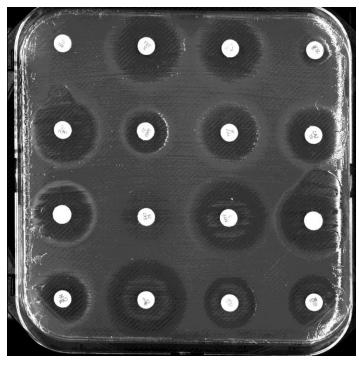
- Vorsichtiges Ausstreichen (Tupferspuren erschweren Ablesen)
- Unterschiede zum Ablesen der normalen Agardiffusion

Arbeitsabläufe im Labor

- Inkubationsdauer einhalten ± 5 Minuten
- Reinkubation bei Unlesbarkeit (häufig min. 2 Ablesezeitpunkte)
- Bei ATU Testung mit weiterer Methode
- 8 h Zeitpunkt ggf. außerhalb der Arbeitszeit

Arbeitsablauf in der Routine

Laboröffnungszeiten


Mo-Fr 7:30 - 20:00

Sa 7:30 – 13:00

So 7:30 - 14:00

- Ein Ablesezeitpunkt 6h
- Semiautomatische Inkubation + Ablesung
- → rapid AST Mo.-Fr. 7:30 12:00
- Kein rapid AST nach 12:00 Uhr und am Wochenende
- > 1x pro Episode einer BSI mit E. coli, K. pneumoniae, A. baumanii, P. aeruginosa

Start im Routinebetrieb August 2019

Performance rapid AST im Routinebetrieb Sep – Nov `19

BSI Episoden insgesamt	146
Proben im rAST Zeitfenster	56 (38%)
rAST durchgeführt	48 (33%)
Standard AST	98 (67%)
Mo – Fr	56 (38%)
Wochenende	42 (27%)

E. coli	33 (69%)
K. pneumoniae	8 (17%)
P. aeruginosa	6 (13%)
A. baumanii	1 (2%)

Readability	99 %
Correct	89 %
mE	0,5 %
ME	0 %
VME	0,5 %
ATU*	9,9 %

^{* 65%} Anteil von TZP

Ausblick

Breakpoints für weitere Antibiotika in Planung

Ongoing work (to be finalised 2019-20):

■ Interpretive criteria for more antibiotics than those currently available (2019-20).

weitere Spezies

Vielen Dank für Ihre Aufmerksamkeit

Philipp.Thelen@uk-koeln.de

